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Abstract

The dissertation thesis focuses on two main topics, namely invariance of partial sum-
mation and iterated partial summation. 1) For each discrete probability distribution
there exists one and only one summation under which the distribution is invariant. If
the summations are parametrized, the parent distribution remains invariant in some
cases, but sometimes we obtain another distribution as the descendant. We suggest
a division of discrete distributions into two families which reflect the behaviour with
respect to the parametrization. Some examples of distributions from both families are
shown, and the necessary and sufficient condition for a distribution to belong to one
of the two families is proven. 2) Partial summations can be applied iteratively. It
is shown that the limit distribution exists for a wide spectrum of partial summations
when applied to a parent with a finite support. The existence of such limit is proved by
the power method which was originally developed in matrix theory to find eigenvalues
and eigenvectors.

Keywords: discrete probability distributions, partial summation, partial summa-
tion invariance, iterated partial summation.
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Abstrakt

Dizertačná práca sa venuje primárne dvom témam, konkrétne invariancii vzhľadom na
parciálnu sumáciu a iterovanej parciálnej sumácii. 1) Pre každé diskrétne rozdelenie
existuje práve jedna sumácia, vzhľadom na ktorú je toto rozdelenie invariantné. Ak
ale sumácie parametrizujeme, v niektorých prípadoch zostáva rozdelenie invariantné,
no niekedy dostávame ako potomka iné rozdelenie pravdepodobnosti. Táto vlastnosť
vytvára dve triedy diskrétnych rozdelení, ktoré reflektujú správanie parametra parciál-
nej sumácie. V práci sú uvedené príklady z obidvoch tried a tiež je odvodená nutná
a postačujúca podmienka na to, aby rozdelenie patrilo do jednej z týchto dvoch tried.
2) Parciálne sumácie je možné opakovať. V práci je dokázané, že limitné rozdelenie
existuje pre široké spektrum parciálnych sumácií aplikovaných na rodiča s konečným
nosičom. Existencia tohoto limitného rozdelenia vyplýva z tzv. mocninovej metódy,
ktorá bola pôvodne navrhnutá pre potreby teórie matíc.

Kľúčové slová: diskrétne rozdelenia pravdepodobnosti, parciálna sumácia, inva-
riancia vzhľadom na parciálnu sumáciu, iterovaná parciálna sumácia.
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Introduction

The dissertation thesis focuses on partial-sum discrete probability distributions. In
this thesis we recapitulate results achieved in the field of partial-sum distributions, we
summarize our own results and we present several possibilities for further research in
this area.

Chapter 1 contains a detailed overview of the relevant literature. An insight into
two basic types of partial summation is provided, together with relations between some
properties of parent and descendant distributions (probability generating functions,
moments). The concept of invariance under partial summation is defined and the
conditions of invariance are listed. Iterated partial summations are introduced, with
examples of their limit behaviour. Some of the applications of partial summations in
reliability analysis or economical modelling, among others, are mentioned.

Chapters 2 and 3 bring new results regarding partial summations that arose during
our research. The topics of these two chapters both concern partial summations, but
they are independent of each other.

In Chapter 2 we classify discrete probability distributions into two families. The
two families reflect the behaviour of a parameter of partial summation. Some examples
of distributions from both families are shown, and the necessary and sufficient condition
for a distribution to belong to one of the two families is proven.

Chapter 3 focuses on the limit distributions obtained by iterated applications of
partial summations. In order to gain a preliminary insight in this field, a computational
study using the R software was performed. We studied the limit distributions with
the use of three different partial summations. Our findings were substantiated by
further research, where we found the connection between partial summations and the
power method, usually used as a computational method for finding eigenvalues and
eigenvectors, from the matrix theory. We managed to reformulate the iterated partial
summation as repeated matrix multiplication, which provides an effective tool to prove
the existence of the limit distribution, which is then expressed as a solution of a system
of linear equations. We present the result of repeated application of partial summation
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to a wide class of discrete distributions with a finite support and we show some specific
examples.

The probability mass functions, parametric spaces and other properties of the
discussed discrete distributions can be found in Wimmer and Altmann (1999). All
computations were run in statistical software R1.

1www.r-project.org
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1 Partial summations

Let {P ∗
j }∞j=0 and {Pj}∞j=0 be discrete probability distributions defined on the set of

non-negative integers. The distribution {Pj}∞j=0 is the result of a partial summation
applied to {P ∗

j }∞j=0 if

Px =
∞∑
j=x

u(x, j)P ∗
j , x = 0, 1, 2, . . . , (1.1)

where u(·, ·) is a real function. The distributions {P ∗
j }∞j=0 and {Pj}∞j=0 are called the

parent and the descendant, respectively. Different types of partial summation can
be obtained by different choices of u(·, ·)1 in (1.1). A brief overview of partial-sum
distributions can be found in Johnson et al. (2005, pp. 508-512). Summation (1.1)
was previously used mainly as a tool for creating new discrete distributions, see, e.g.,
Wimmer and Altmann (2001a), where four particular types of partial summations are
proposed:

Px =
1

µ

∞∑
j=x

P ∗
j , x = 1, 2, . . . ,

Px =
∞∑
j=x

P ∗
j

j
, x = 1, 2, . . . ,

Px =
1

µ− 1

∞∑
j=x+1

P ∗
j , x = 1, 2, . . . ,

Px =
1

1− P ∗
1

∞∑
j=x+1

P ∗
j

j − 1
, x = 1, 2, . . . ,

µ being the mean of the parent. Naranan and Balasubrahmanyan (2005) suggest a
new discrete distribution created by partial summation to model phoneme frequencies.

1We remind that the function u(·, ·) does not necessarily have to depend on both of its arguments.
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In the field of economic modelling, Li and Garrido (2002) focus on the discrete time
risk model. They set u(·, ·) from 1.1 to the non-negative values of a penalty function.
Such partial summation is used to determine a recursive expression for the expected
discounted penalty due at ruin. Also in the recent research by Baker (2019), the partial
summations are studied as a method for obtaining new discrete distributions. Baker
(2019) also proposes integrating probability density functions by parts for providing
new continuous probability distributions. However, other applications of partial sum-
mations are available in literature, as we describe in this chapter.

Mačutek (2003) proposed two types of partial summation that are special cases
of (1.1), namely

Px =
∞∑
j=x

g(j)P ∗
j , x = 0, 1, 2, . . . (1.2)

and

Px = h(x)
∞∑
j=x

P ∗
j , x = 0, 1, 2, . . . , (1.3)

where g(·) and h(·) are real functions, g(·) depends solely on j, and h(·) is a con-
stant with respect to the index of summation j. There is a one-to-one correspondence
between discrete distributions and partial summations (1.2). For every distribution,
there exists one and only one partial summation defined by (1.2), which results in the
descendant identical with its parent, i.e.,

Px = P ∗
x , x = 0, 1, 2, . . . .

The same is true for summation (1.3). Then we say that the distribution {P ∗
j }∞j=0

is invariant with respect to summation (1.2), or (1.3). Hence, the functions g(·) and
h(·) can be considered new characteristics of discrete distributions. Mačutek (2003)
derives these characteristics for a wide class of discrete distributions. Let the parent
distribution satisfy the recurrence relation

P ∗
x+1 = f(x+ 1)P ∗

x x = 0, 1, 2, . . . .

The distribution is invariant with respect to the summation (1.2) if and only if

g(x) = 1− f(x+ 1), x = 0, 1, 2, . . . . (1.4)

On the other hand, the distribution is invariant with respect to the summation (1.3)
if and only if

h(x) =

(
1 +

∞∑
j=1

j∏
k=1

f(x+ k)

)−1

, x = 0, 1, 2, . . . .

4



Table 1.1: Characteristics g(·) and h(·) for some distributions

distribution (parameters) g(x) h(x)

geometric (p) p p

Poisson (λ) x−λ+1
x+1

1
1F1(1;x+1;λ)

negative binomial (k, p) 1−k+p(k+x)
x+1

1
2F1(x+k,1;x+1;1−p)

1-shifted logarithmic (θ) x(1−θ)−θ+2
j+2

1
2F1(x+1,1;x+2;θ)

2-shifted Flory x
2(x+1)

1

2F1(x+2,1;x+1; 1
2
)

Salvia-Bolinger (α) α+1
x+2

α
x+1

Yule (b) b+1
x+b+2

b
x+b+1

family (parameters) g(x) h(x)

power series (ax, θ, f(·)) ax−θax+1

ax
ax∑∞

i=0 ax+iθi

Katz (α, β), β ̸= 0 1−α+(1−β)x
x+1

1
2F1(x+

α
β
,1;x+1;β)

Irwin (ax, θ, ψ(·)) − (x+θ+1)ax−ax+1

(x+θ+1)ax
ax∑∞

i=0

ax+i

(x+θ+1)(j)

We provide several examples taken from Mačutek (2003), see Table 1.1. The mentioned
distributions and distribution families can be found in Wimmer and Altmann (1999).
Also the relations between probability generating functions G∗(·) and G(·) of the parent
and descendant distributions, respectively, for arbitrary meaningful function g(·) in the
summation 1.2 are presented by Mačutek (2003), with

G(t) =

1− tG∗(t)−
∞∑
x=0

P ∗
xf(x+ 1)(1− tx+1)

(1− t)

(
1 + µ∗ −

∞∑
x=0

(x+ 1)f(x+ 1)P ∗
x

) ,
µ∗ being finite mean of the parent. Special cases of this relation between probability
generating functions can be found in Mačutek (2001), Mačutek (2002) and Wimmer
and Altmann (2000).

Wimmer and Kalas (1999) had derived the characteristics g(·) and h(·) for the
geometric distribution before Mačutek (2003) presented the general formula. The ge-
ometric distribution is invariant with respect to both of summations (1.2) and (1.3) if
and only if the function g(·) (as well as h(·)) is equal to p, which is the parameter of
the geometric distribution, i.e., if

Px = p
∞∑
j=x

P ∗
j , x = 0, 1, 2, . . . . (1.5)

The same is shown by Li and Garrido (2002) as a by-product of their time-to-ruin
analysis. The partial summation (1.5) can be also called the geometric partial summa-
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tion (similarly, the partial summation, with respect to which the Poisson distribution
is invariant, is called the Poisson partial summation, etc.). The geometric partial sum-
mation is widely used in reliability analysis, mostly to determine the residual life of a
component in a system, see e.g. Unnikrishnan Nair and Hitha (1989) or Unnikrishnan
Nair et al. (2012). An application of this type of partial summation in risk models
in insurance is presented by Willmot (1986). The geometric distribution is somewhat
special among discrete distributions, being invariant to the partial summation defined
by g(j) = h(x) = p. In general, the functions g(·) and h(·) which determine partial
summations under which a distribution is invariant differ from each other.

A special case of (1.2),

Px = c
∞∑

j=x+1

1

j
P ∗
j , x = 0, 1, 2, . . . , (1.6)

where c is a proper normalization constant, also known as the STER summation
(Sums successively Truncated from the Expectation of the Reciprocal of a random
variable having the parent distribution), can be found in Bissinger (1965). According
to Xekalaki (1983), the Yule distribution is the only one for which the parent and the
descendant are identical under (1.6).

A generalization of (1.6) is proposed by Wimmer and Altmann (2000) and another
one by Mačutek (2002). In Mačutek (2002) the generalization is

Px(k, l) = A(k, l)
∞∑
j=x

1

j + l
P ∗
j+k, x = 0, 1, 2, . . . , (1.7)

k ≥ 0 and l ≥ 0 are integers, A(k, l) is a normalization constant. For k = l = 1 it is
the usual STER summation. The author presents recursive formulas to compute the
descendant probabilities,

Px+1(k, l) = Px(k, l)−
A(k, l)

x+ l
P ∗
x+k,

with

A(k, l) =

(
1−

k−1∑
i=0

Pi − (l − 1)
∞∑
i=k

1

i− k + l
Pi

)−1

and provides relations between the probability generating functions G∗(·) and G(·) of
the parent and the descendant under summation (1.7), respectively, which is

G(t) =
A(k, l)

1− t

∫ 1

t

(
G∗(z)−

k−1∑
i=0

Piz
i − (l − 1)

∞∑
i=k

1

i− k + l
Piz

i

)
z−kdz

6



and also the relation between the r-th descending factorial moments. Let µ∗
(r) denote

the r-th descending factorial moment of parent and µ(r) denote the r-th descending
factorial moment of descendant under summation (1.7). If µ∗

(r) and µ(r) exist for all
r ≥ 1 then

µ(r) =
A(k, l)

r + 1

(
r∑

i=0

(
r

i

)
(−k)(i)µ∗

(r−i) −
k−1∑
i=0

(i− k)(r)Pi − (l − 1)
∞∑
i=k

(i− k)(r)
i− k + l

Pi

)
,

where x(r) = x(x − 1) . . . (x − r + 1) denotes the r-th descending factorial of a real
number x, r ≥ 0 is an integer and x(0) = 1. The (k − 1)-displaced Yule distribution,
k ≥ 1, is invariant with respect to the generalized STER summation (1.7), which is in
accordance with the result of Xekalaki (1983) for k = l = 1.

The generalization of the STER summation presented by Wimmer and Altmann
(2000) is simpler than the previously discussed one,

Px =
1

∞∑
s=k

P ∗
s

∞∑
j=x+k

1

j − k + 1
P ∗
j , x = 0, 1, 2, . . . ,

k ≥ 0 is integer. It is the same as (1.7) for l = 1. Many pairs of the parent and the
descendant distributions from the generalized hypergeometric family are presented.

Another special case of (1.2), namely

Px = c
∞∑
j=x

rj−xP ∗
j , x = 0, 1, 2, . . . , (1.8)

r ∈ R, c is a proper constant, finds its application in economic modelling, see e.g. Lin
and Willmot (1999), or Li (2005) and Li et al. (2009). In the latter two works, the
summation (1.8) is used to characterize a class of renewal risk models. The partial
summation is understood more generally there, as an operator on any real-valued
function.

Mačutek (2001) focuses on the partial summation (1.2) with such function g(·)
that leaves the Katz family of discrete distributions unaltered, i.e.,

g(j) = 1− α + βj

1 + j
,

α ≥ 0, β > 1 being the parameters of distributions from the Katz family. The Katz
partial summation can be written as

Px = c
∞∑
j=x

(
1− α + βj

1 + j

)
P ∗
j , x = 0, 1, 2, . . . ,

7



where c is a proper constant and {P ∗
j }∞j=0 is a proper probability mass function with

finite mean µ∗. The relation between the probability generating functions G∗(·), G(·)
of the parent and descendant distributions, respectively, is provided,

G(t) = c
(1− β)(1− tG∗(t))− (α− β)

∫ 1

t
G∗(z)dz

1− t
,

where

c =
1

1− α + (1− β)µ∗ .

The relation between the r-th descending factorial moments, denoted µ∗
(r) for parent

and µ(r) for descendant according to Mačutek (2001) is

µ(r) =
c

r + 1

(
(1− β)µ∗

(r)(1− α− βr + rµ∗
(r))
)
,

supposing the generating functions of the descending factorial moments of parent and
descendant distributions exist.

Wimmer and Altmann (2001b) inspect the condition of invariance for summation

Px =
k

x

∞∑
j=x

P ∗
j x = 1, 2, 3, . . .

which is a special case of (1.3) for

h(x) =
k

x
,

k is a proper normalization constant. This type of partial summation arose from
generalizing the theoretical explorations of the Bradford law by Brookes (1977) and
from searching for a law-like hypotheses in quantitative linguistics and musicology. It
turns out that the 1-displaced Salvia-Bolinger distribution (see e.g. Salvia and Bolinger,
1982) is the invariant distribution for such choice of the function h(·). The relation
between probability generating functions G∗(·) and G(·) of parent and descendant,
respectively, connected by this partial summation is provided,

G(t) = k

∫ t

0

1−G∗(z)

1− z
dz,

as well as the relation between the r-th descending factorial moments µ∗
(r) and µ(r) of

the parent and descendant, respectively,

µ(r) =
k

r
µ∗
(r).
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A method for finding continuous analogues of discrete distributions (and vice
versa) based on the partial summation (1.2) is provided by Mačutek and Altmann
(2007). The authors consider an integral transformation

φ(x) =

∫ ∞

x

g(t)φ∗(t)dt, (1.9)

where φ(·) and φ∗(·) are probability density functions and the function g(·) satisfies
(1.4) for a certain discrete distribution. It is easy to see the analogy between summation
(1.2) and integration (1.9). Supposing φ(·) is differentiable on the interval (0;∞),
φ(x) = 0 for x < 0 and φ(x) > 0 for x > 0, the function φ(·) satisfying

φ(x) =

∫ ∞

x

g(t)φ(t)dt

is probability density function of the continuous analogue for the considered discrete
distribution. In the mentioned work there are shown continuous analogues for several
discrete distributions, see Table 1.2. The discrete distributions listed in the Table 1.2
can be found in Wimmer and Altmann (1999) while for the continuous distributions
see Johnson and Kotz (1970). Mačutek and Altmann (2007) also provide a backward
procedure, which finds its use in the field of quantitative linguistics.

It is possible to apply partial summation repeatedly as follows:

P (1)
x = c1

∞∑
j=x

u(x, j)P ∗
j , x = 0, 1, 2, . . . ,

P (2)
x = c2

∞∑
j=x

u(x, j)P
(1)
j , x = 0, 1, 2, . . . ,

...

P (n)
x = cn

∞∑
j=x

u(x, j)P
(n−1)
j , x = 0, 1, 2, . . . ,

...

where ci is a normalization constant which ensures that {P (i)
x }∞x=0 is a proper distribu-

tion for i = 1, 2, 3, . . . .

Mačutek (2006) focuses on partial summation with

u(x, j) = p,

9



Table 1.2: Continuous analogues to some discrete distributions

discrete distribution continuous distribution
Px φ(x)

geometric exponential
p(1− p)x Ce−px

negative binomial Pearson type III(
k+x−1

x

)
pk(1− p)x Ce−px(x+ 1)(k−1)(1−p)

Poisson Pearson type III
e−aax

x!
Ce−x(x+ 1)a

hyperpoisson Pearson type III
ax

1F1(1;b;a)b(x)
Ce−px(x+ b)a

Yule Pearson type VIII/Zipf-Mandelbrot
bx!

(b+1)(x+1) C(x+ b+ 2)−b−1

Waring Pearson type VIII/Zipf-Mandelbrot
bn(x)

(b+n)(b+n+1)(x)
C(x+ b+ n+ 1)−b−1

Simon Lotka
1

(x+1)(x+2)
C(x+ 3)−2

Johnson-Kotz generalized Lotka
a

(a+x)(a+x+1)
C(x+ a+ 2)−2

hyperpascal Pearson type III
(k+x−1

x
)

(m+x−1
x

)
qxP0 Ce−(1−q)x(x+m)q(k−m)

p ∈ (0, 1). We remind that the geometric distribution is invariant with respect to this
partial summation, see Wimmer and Kalas (1999). Mačutek (2006) shows that the
sequence of probability mass functions is in this case

P (n)
x =

n∏
s=1

cs

∞∑
j=0

(
n+ j − 1

j

)
P ∗
x+j, k = 0, 1, 2, . . . , n = 1, 2, . . .

and proves, using the convergence of the probability generating functions

Gn(t) =
n−1∑
j=0

(−1)jtj
j∏

s=0

cn−s

(1− t)j+1
+

(−1)ntn
n∏

r=1

cr

(1− t)n
G∗(t), n = 1, 2, . . . ,

that if the parent distribution {P ∗
j }∞j=0 satisfies

p = lim
j→∞

P ∗
j+1

P ∗
j

, (1.10)
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then the limit distribution is the geometric distribution with the parameter value equal
to p in (1.10), i.e.,

lim
i→∞

P (i)
x = p(1− p)x, x = 0, 1, 2, . . . .

However, if the parent distribution has a finite support, the limit distribution is deter-
ministic.

Generally, in the partial summation (1.1) there are three elements:

(1) the parent distribution {P ∗
j }∞j=0,

(2) the descendant distribution {Pj}∞j=0, and

(3) the function u(·, ·) (or in special cases (1.2) and (1.3) the functions g(·) and h(·),
respectively) - the link between the parent and the descendant.

Wimmer and Altmann (2000) show that for two different parent distributions (they
call them parent and godparent) it is possible to obtain the same descendant if different
type of partial summation is applied (they work with the generalized STER summation
(1.6) and the geometric summation (1.5)). However, if we fix two of the three elements,
the remaining one is almost2 uniquely given by (1.1). What is more, Wimmer and
Mačutek (2012) prove that any two discrete distributions defined on the same support
with only non-zero probabilities are connected by a partial summation for some choice
of the function u(·, ·).

The result given by Wimmer and Mačutek (2012) has its consequences. The so-
called Wimmer-Altmann family of distributions was suggested as a general model in
quantitative linguistics (see Wimmer and Altmann, 2005). Under this assumption the
question arises what to do with models which appear in linguistics but do not belong to
the suggested family of distributions. Mačutek (2005) attempts to answer the question
by enlarging the above mentioned family, namely by presenting the “problematic”
models as partial-sums distributions with a parent from the Wimmer-Altmann family
of distributions. However, due to Wimmer and Mačutek (2012) this attempt fails, since
all discrete distributions with non-zero probabilities can be presented in this way.

The work of Kotz and Johnson (1991), besides a little criticism towards Unnikrish-
nan Nair and Hitha (1989) due to some inconsistencies, suggests a bivariate extension
of partial sum distributions. The idea of bivariate partial-sums distributions is further
discussed by Leššová and Mačutek (2020), who define the bivariate partial summation

2The non-uniqueness concerns only parent distributions for some modifications of partial summa-
tion (1.3) and is caused by the normalization constant.
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as follows. Let {P ∗
x,y}∞x,y=0 and {Px,y}∞x,y=0 be bivariate discrete distributions and let

g(x, y) be a real function. Then {Px,y}∞x,y=0 is the descendant of the parent {P ∗
x,y}∞x,y=0

if

Px,y = c

∞∑
i=x

∞∑
j=y

g(i, j)P ∗
i,j, x = 0, 1, 2, . . . y = 0, 1, 2, . . . .

The authors continue with finding the limit distribution of iterated bivariate partial
summation for parent distribution of a finite support. Similarly as Koščová et al. (2020),
they use the power method. They discover that there are sequences of descendant
distributions which do not converge, but oscillate instead. For example, when the
parent is alternative distribution with the parameter 1

2
and the type of repeated partial

summation is given by g(j) = 1−
4
3

j+1
, which corresponds to Poisson distribution with

the parameter 4
3
, it holds

{P ∗
j }1j=0 = {P ∗

0 , P
∗
1 } =

{
1

2
,
1

2

}
,

{
P

(1)
j

}1

j=0
=
{
P

(1)
0 , P

(1)
1

}
= {0, 1},

{
P

(2)
j

}1

j=0
=
{
P

(2)
0 , P

(2)
1

}
=

{
1

2
,
1

2

}
,

{
P

(3)
j

}1

j=0
=
{
P

(3)
0 , P

(3)
1

}
= {0, 1},

etc. For a detailed research on oscillation of univariate partial-sums discrete probability
distributions of the support size 2 and 3, see Leššová (2019).
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2 Parametrization of partial
summations

In this chapter we consider the partial summation (1.2)

Px =
∞∑
j=x

g(j)P ∗
j , x = 0, 1, 2, . . . . (2.1)

Let f(x) be a function given by

P ∗
x+1 = f(x+ 1)P ∗

x , x = 0, 1, 2, . . . . (2.2)

Then (according to Mačutek, 2003) the function g(·), which leaves the parent distri-
bution unaltered under summation (2.1), is

g(x) = 1− f(x+ 1), x = 0, 1, 2, . . . . (2.3)

For the sake of simplicity, in the following considerations we limit ourselves to discrete
distributions with one parameter only.

Denote a the parameter of the distribution {P ∗
j }∞j=0. In order to emphasize the

role of the parameter, we can use the notation {P ∗
j (a)}∞j=0 and condition of invariance

(2.3) can be rewritten as

g(x; a) = 1− f(x+ 1; a), x = 0, 1, 2, . . . . (2.4)

The descendant distribution is uniquely given by {P ∗
j (a)}∞j=0 and g(x; a), x = 0, 1, . . . ,

i.e., it also depends solely on the parameter a. Hence the distribution resulting from
(2.1) is in fact {Pj(a)}∞j=0:

Px(a) =
∞∑
j=x

g(j; a)P ∗
j (a), x = 0, 1, 2, . . . . (2.5)
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2.1 Change of parameter in partial summation

Let us consider a modification of summation (2.5), namely,

Px = c

∞∑
j=x

g(j;λ)P ∗
j (a), x = 0, 1, 2, . . . , (2.6)

with

g(x;λ) = 1− f(x+ 1;λ), x = 0, 1, 2, . . . , (2.7)

where the formula for the function from (2.4) is kept, but parameter a was replaced
with λ; c is a proper constant (with respect to x) which should ensure that {Pj(a)}∞j=0

sums to 1. Our aim is to investigate consequences of the above mentioned change of
the parameter value.

2.2 Examples

2.2.1 Geometric distribution

Let {P ∗
j (a)}∞j=0 be the geometric distribution with parameter a ∈ (0; 1⟩, i.e.,

P ∗
j (a) = a(1− a)j, j = 0, 1, 2, . . . .

Summation (2.6) yields

Px = c
∞∑
j=x

g(j;λ)a(1− a)j, x = 0, 1, 2, . . . ,

and function g(·) is determined by (2.7) as

g(x;λ) =1− f(x+ 1;λ) = 1−
P ∗
x+1(λ)

P ∗
x (λ)

= 1− λ(1− λ)x+1

λ(1− λ)x
=

=1− (1− λ) = λ, x = 0, 1, 2, . . . .

To find the descendant distribution {Pj}∞j=0 it is necessary to find the normalization
constant c,
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c =

[
∞∑
x=0

∞∑
j=x

g(j;λ)P ∗
j (a)

]−1

=

[
λa

∞∑
x=0

∞∑
j=x

(1− a)j

]−1

=

=

[
λa

∞∑
x=0

(1− a)x

a

]−1

=

[
λ
1

a

]−1

=
a

λ
.

Hence the descendant is

Px =
a

λ

∞∑
x=j

λa(1− a)j = a2
∞∑
j=x

(1− a)j = a(1− a)x, x = 0, 1, 2, . . . .

For the geometric distribution, the change of the parameter value from a to λ in sum-
mation (2.6) does not affect the resulting descendant distribution, as the new parameter
value is eliminated by the constant c. The descendant distribution is identical with its
parent distribution.

2.2.2 Poisson distribution

If {P ∗
j (a)}∞j=0 is the Poisson distribution with parameter a ≥ 0, i.e.,

P ∗
j (a) =

e−aaj

j!
, j = 0, 1, 2, . . . ,

the summation (2.6) has the form

Px = c
∞∑
j=x

g(j;λ)
e−aaj

j!
, x = 0, 1, 2, . . . .

The function g(·) is determined by (2.7), i.e.,

g(x;λ) =1− f(x+ 1;λ) = 1−
P ∗
x+1(λ)

P ∗
x (λ)

= 1−

e−λλx+1

(x+ 1)!

e−λλx

x!

=

=1− λ

x+ 1
, x = 0, 1, 2, . . . .

The normalization constant is

c =

[
∞∑
x=0

∞∑
j=x

g(j;λ)P ∗
j (a)

]−1

=

[
∞∑
x=0

∞∑
j=x

(
1− λ

j + 1

)
e−aaj

j!

]−1

=

=

[
∞∑
j=0

j∑
x=0

(
1− λ

j + 1

)
e−aaj

j!

]−1

=
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=

[
∞∑
j=0

(j + 1)

(
1− λ

j + 1

)
e−aaj

j!

]−1

=

[
∞∑
j=0

(j + 1− λ)
e−aaj

j!

]−1

=

=

[
1− λ+

∞∑
j=1

j
e−aaj

j!

]−1

=

[
1− λ+ a

∞∑
j=1

e−aaj−1

(j − 1)!

]−1

=
1

1− λ+ a
.

Therefore, the descendant distribution is given by

Px =
1

1− λ+ a

∞∑
x=j

(
1− λ

j + 1

)
e−aaj

j!
, x = 0, 1, 2, . . . .

The resulting descendant distribution for the Poisson parent is a two-parameter dis-
tribution (i.e. it differs from its parent, which has only one parameter). As both
parameters a and λ are parameters of certain Poisson distributions, they must not be
negative. Moreover, it must hold a + 1 > λ, because the normalization constant c is
supposed to be positive.

2.2.3 Logarithmic distribution

We consider the logarithmic distribution in the form

P ∗
j (a) = − aj+1

(j + 1) log(1− a)
, j = 0, 1, 2, . . . ,

a ∈ ⟨0; 1) is parameter, to be the parent distribution. We shifted the classical log-
arithmic distribution to the left by 1 so that the parent distribution is defined on
all non-negative integers (like all other examples). The descendant distribution with
respect to summation (2.6) is

Px = −c
∞∑
j=x

g(j;λ)
aj+1

(j + 1) log(1− a)
, x = 0, 1, 2, . . . ,

where function g(·) defined by (2.7) is

g(x;λ) =1− f(x+ 1;λ) = 1−
P ∗
x+1(λ)

P ∗
x (λ)

= 1−

λx+2

(x+ 2) log(1− λ)

λx+1

(x+ 1) log(1− λ)

=

=1− λ
x+ 1

x+ 2
, x = 0, 1, 2, . . . .

The normalization constant c is

c =

[
∞∑
x=0

∞∑
j=x

g(j;λ)P ∗
j (a)

]−1

=
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=

[
−

∞∑
x=0

∞∑
j=x

(
1− λ

j + 1

j + 2

)
aj+1

(j + 1) log(1− a)

]−1

=

=

[
−

∞∑
j=0

j∑
x=0

(
1− λ

j + 1

j + 2

)
aj+1

(j + 1) log(1− a)

]−1

=

=

[
−

∞∑
j=0

(
1− λ

j + 1

j + 2

)
aj+1

log(1− a)

]−1

=

=

[
−

∞∑
j=0

(1− λ)
aj+1

log(1− a)
−

∞∑
j=0

λ

j + 2

aj+1

log(1− a)

]−1

=

=

[
− 1− λ

log(1− a)

a

1− a
− λ

a log(1− a)

∞∑
j=0

aj+2

j + 2

]−1

=

=

[
− 1− λ

log(1− a)

a

1− a
− λ

a log(1− a)

∫ ∞∑
j=0

aj+1da

]−1

=

=

[
− 1− λ

log(1− a)

a

1− a
− λ

a log(1− a)

∫
a

1− a
da

]−1

=

=

[
− 1− λ

log(1− a)

a

1− a
+
λ(a+ log(1− a))

a log(1− a)

]−1

=

=
a(1− a) log(1− a)

(λ− 1)a2 + λ(a− 1)(a+ log(1− a))
.

The descendant distribution turns out to be

Px = −

a(1− a) log(1− a)
∞∑
x=j

(
1− λ

j + 1

j + 2

)
aj+1

(j + 1) log(1− a)

(λ− 1)a2 + λ(a− 1)(a+ log(1− a))
, x = 0, 1, 2, . . . ,

which is a rather complicated distribution with two parameters λ and a.

2.2.4 Salvia-Bolinger distribution

Let the parent be the Salvia-Bolinger distribution with parameter a ∈ (0; 1⟩, which is
defined as

P ∗
0 (a) =a,
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P ∗
j (a) =

a

j∏
k=1

(k − a)

(j + 1)!
, j = 1, 2, 3, . . . .

To find the descendant distribution we need the function g(·) from (2.7), which can be
expressed as

g(x;λ) =1− f(x+ 1;λ) = 1−
P ∗
x+1(λ)

P ∗
x (λ)

= 1− x+ 1− λ

x+ 2

=
λ+ 1

x+ 2
, x = 0, 1, 2, . . . .

The normalization constant c in this case evaluates to

c =

[
∞∑
x=0

∞∑
j=x

g(j;λ)P ∗
j (a)

]−1

=

[
∞∑
j=0

(j + 1)g(j, λ)P ∗
j (a)

]−1

=

=

[
∞∑
j=0

(j + 1)
λ+ 1

j + 2
P ∗
j (a)

]−1

=

=

[
(λ+ 1)

(
∞∑
j=0

P ∗
j (a)−

∞∑
j=0

1

j + 2
P ∗
j (a)

)]−1

=

=

[
(λ+ 1)

(
1− a

2
−

∞∑
j=1

a(1− a)(2− a) . . . (j − a)

(j + 2)!

)]−1

=

=

{
(λ+ 1)

[
1− a

2

(
1 +

1− a

3
+

(1− a)(2− a)

3 · 4
+ . . .

)]}−1

=

=
[
(λ+ 1)

(
1− a

2
2F1(1− a, 1; 3; 1

)]−1

=

=

[
(λ+ 1)

(
1− a

2

Γ(a+ 1)Γ(3)

Γ(2)Γ(a+ 2)
)

)]−1

=

=

[
(λ+ 1)

(
1− a

2

2

a+ 1
)

)]−1

=
a+ 1

λ+ 1
,

where 2F1(a, b; c; t) is the hypergeometric function defined as

2F1(a, b; c; t) =
∞∑
j=0

a(j)b(j)tj

j!c(j)
= 1 +

abt

1!c
+
a(a+ 1)b(b+ 1)t2

2!c(c+ 1)
+ . . .
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(for more detail see e.g. Abramowitz and Stegun, 1972). In the derivation of the
constant c above we applied the Gauss summation theorem, i.e.

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

for c− a− b > 0. Then the descendant distribution is

Px =
a+ 1

λ+ 1

∞∑
j=x

λ+ 1

j + 2
P ∗
j (a) =

∞∑
j=x

a+ 1

j + 2
P ∗
j (a), x = 0, 1, 2, . . . .

The new parameter of summation, i.e., λ is eliminated by the normalization constant
c and the resulting partial summation is according to (2.4) the Salvia-Bolinger partial
summation. Therefore,

Px = P ∗
x (a).

The Salvia-Bolinger distribution is, like the geometric distribution, resistant to the
change of partial summation parameter.

2.3 Two families of discrete distributions

We use the examples to demonstrate that the descendant distribution of summation
(2.6) is either a one-parameter distribution identical with its parent or a two-parameter
distribution. This behaviour defines two families of discrete distributions. The first
family consists of those distributions that yield a two-parameter descendant under
summation (2.6), e.g., the Poisson and the logarithmic distribution (see Section 2.2.2
and Section 2.2.3). In the following, this family of distributions is denoted by the term
family of sensitive distributions (or the sensitive family). The name of this family is
chosen to emphasize the sensitivity of the parent to the change of summation parameter
value. On the other hand, the group of distributions that remain unaltered under
summation (2.6) is henceforward denoted as the family of resistant distributions (or
the resistant family). The resistant family contains, e.g., the geometric and the Salvia-
Bolinger distribution (as is shown in Section 2.2.1 and in Section 2.2.4). The members
of the resistant family are, in fact, resistant to the change of summation parameter
value, when summation (2.6) is applied to them. In the following part of this chapter
we provide the theoretical background.

Lemma 1. The normalization constant c can be expressed as

c =
1

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

P ∗
s (a)[s− (s+ 1)f(s+ 1;λ)]

,
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and if the distribution {P ∗
j (a)}∞j=0 has a finite mean µ, then it holds

c =
1

µ+ 1−
∞∑
s=1

sf(s;λ)P ∗
s−1(a)

.

Proof. It is possible to rewrite summation (2.6) as a series of equations

P0 =c[g(0;λ)P
∗
0 (a) + g(1;λ)P ∗

1 (a) + g(2;λ)P ∗
2 (a) + . . . ],

P1 =c[ g(1;λ)P ∗
1 (a) + g(2;λ)P ∗

2 (a) + . . . ],

P2 =c[ g(2;λ)P ∗
2 (a) + . . . ],

...

or

P0 =c{[1− f(1;λ)]P ∗
0 (a) + [1− f(2;λ)]P ∗

1 (a) + [1− f(3;λ)]P ∗
2 (a) + . . . },

P1 =c{ [1− f(2;λ)]P ∗
1 (a) + [1− f(3;λ)]P ∗

2 (a) + . . . },

P2 =c{ [1− f(3;λ)]P ∗
2 (a) + . . . },

...

which is the same as

P0 =c{P ∗
0 (a) + P ∗

1 (a) + P ∗
2 (a) + . . . − [f(1;λ)P ∗

0 (a) + f(2;λ)P ∗
1 (a) + . . . ]},

P1 =c{ P ∗
1 (a) + P ∗

2 (a) + . . . − [ f(2;λ)P ∗
1 (a) + . . . ]},

...

After summing both sides of these equations we have

1 = c

{
[P ∗

0 (a) + 2P ∗
1 (a) + . . . ]−

∞∑
s=1

sf(s;λ)P ∗
s−1(a)

}
,

which leads to

c =
1

1 +
∞∑
k=1

kP ∗
k (a)−

∞∑
s=1

sf(s;λ)P ∗
s−1(a)

=

20



=
1

1 +
∞∑
k=2

(k − 1)P ∗
k−1(a)−

∞∑
s=2

sf(s;λ)P ∗
s−1(a)− f(1;λ)P ∗

0 (a)

and, consequently,

c =
1

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

[s− (s+ 1)f(s+ 1;λ)]P ∗
s (a)

. (2.8)

If the distribution {P ∗
j (a)}∞j=0 has the finite mean µ, the constant c is obviously

c =
1

1 + µ−
∞∑
s=1

sf(s;λ)P ∗
s−1(a)

. (2.9)

Theorem 1. A one-parameter discrete distribution {P ∗
j (a)}∞j=0 belongs to the resistant

family if and only if

1− f(j + 1;λ)

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

[s− (s+ 1)f(s+ 1;λ)]P ∗
s (a)

= 1− f(j + 1; a), (2.10)

j = 0, 1, 2, . . . .

Proof. Using the invariance condition (2.4), which is

g(x; a) = 1− f(x+ 1; a), x = 0, 1, 2, . . . ,

the parent distribution {P ∗
j (a)}∞j=0 is not changed by summation (2.6) if and only

if

Px(a) =
∞∑
j=x

(1− f(j + 1; a))P ∗
j (a), x = 0, 1, 2, . . . . (2.11)

Next, using the result of Lemma 1 it holds

Px(a;λ) =
∞∑
j=x

g(j;λ)P ∗
j (a)

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

[s− (s+ 1)f(s+ 1;λ)]P ∗
s (a)

, (2.12)

x = 0, 1, 2, . . . .
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Then combining (2.11) and (2.12) we obtain

g(j;λ)

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

[s− (s+ 1)f(s+ 1;λ)]P ∗
s (a)

= 1− f(j + 1; a),

j = 0, 1, 2, . . . ,

which is the same as
1− f(j + 1;λ)

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

[s− (s+ 1)f(s+ 1;λ)]P ∗
s (a)

= 1− f(j + 1; a),

j = 0, 1, 2, . . . .

Theorem 1 offers a rule which strictly distinguishes between the family of resistant
distributions and the family of sensitive distributions. For distributions with the finite
mean µ, the rule (2.10) can be expressed analogously to (2.9) as

1− f(j + 1;λ)

1 + µ−
∞∑
s=1

sf(s;λ)P ∗
s−1(a)

= 1− f(j + 1; a).

Theorem 2. If the distribution {P ∗
j } belongs to the resistant family then the ratio

1−
P ∗
j+1(λ)

P ∗
j (λ)

1−
P ∗
j+1(a)

P ∗
j (a)

(2.13)

does not depend on j.

Proof. The sufficient and necessary condition (2.10) for a distribution to belong
to the resistant family can be reformulated as

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

[s− (s+ 1)f(s+ 1;λ)]P ∗
s (a) =

1− f(j + 1;λ)

1− f(j + 1; a)
.

Using (2.2) we obtain

1− f(1;λ)P ∗
0 (a) +

∞∑
s=1

[s− (s+ 1)f(s+ 1;λ)]P ∗
s (a) =

1−
P ∗
j+1(λ)

P ∗
j (λ)

1−
P ∗
j+1(a)

P ∗
j (a)

. (2.14)
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It is easy to see that the left side of (2.14) does not depend on j, therefore the
right side necessarily must not depend on j too.

Theorem 2 presents a useful necessary condition which can be used to classify
distributions to the sensitive family. Discrete distributions with one parameter for
which (2.13) is dependent on j are certainly from the family of sensitive distributions.
Those for which (2.13) is independent of j are candidates for the resistant family
and validity of the condition (2.10) comes into question. In addition, if the necessary
condition is satisfied, combining (2.8) with (2.14) we have

c =

1−
P ∗
j+1(a)

P ∗
j (a)

1−
P ∗
j+1(λ)

P ∗
j (λ)

.

For the Poisson distribution it holds

1−
P ∗
j+1(λ)

P ∗
j (λ)

1−
P ∗
j+1(a)

P ∗
j (a)

=

1−

e−λλj+1

(j + 1)!

e−λλj
j!

1−

e−aaj+1

(j + 1)!

e−aaj

j!

=

1− λ

j + 1

1− a

j + 1

=
j + 1− λ

j + 1− a
,

hence the ratio (2.13) is dependent on j. Thus, the Poisson distribution belongs to
the family of sensitive distributions, as was shown above in Section 2.2.2. Similarly for
logarithmic distribution the ratio (2.13) leads to

1−
P ∗
j+1(λ)

P ∗
j (λ)

1−
P ∗
j+1(a)

P ∗
j (a)

=

1−
− λj+2

(j + 2) log(1− λ)

− λj+1

(j + 1) log(1− λ)

1−
− aj+2

(j + 2) log(1− a)

− aj+1

(j + 1) log(1− a)

=

1− λ(j + 1)

j + 2

1− a(j + 1)

j + 2

=
j + 2− λ(j + 1)

j + 2− a(j + 1)
,

which is also dependent on j. The logarithmic distribution also belongs to the sensitive
family. However, for the geometric distribution it holds

1−
P ∗
j+1(λ)

P ∗
j (λ)

1−
P ∗
j+1(a)

P ∗
j (a)

=

1− λ(1− λ)j+1

λ(1− λ)j

1− a(1− a)j+1

a(1− a)j

=
1− (1− λ)

1− (1− a)
=
λ

a
(2.15)
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and for the Salvia-Bollinger distribution,

1−
P ∗
j+1(λ)

P ∗
j (λ)

1−
P ∗
j+1(a)

P ∗
j (a)

=

1− j + 1− λ

j + 2

1− j + 1− a

j + 2

=
1 + λ

1 + a
. (2.16)

Both (2.15) and (2.16) do not depend on j.

2.4 Other distributions in the family of resistant
distributions?

The family of resistant distributions seems to be significantly smaller than the family of
sensitive distributions. So far only the geometric and the Salvia-Bolinger distribution
are known to be from that family. We perform a search for other members of the
resistant family.

The Kemp-Dacey-hypergeometric family will be scrutinized. The probability mass
function of this family of distributions is

Px =
Ca

(x)
1 a

(x)
2 . . . a

(x)
k θx

x!b
(x)
1 b

(x)
2 . . . b(x)r

, x ∈ T,

where T is a subset of N0 = {0, 1, 2, . . . }, k, r ∈ N0, (a1, a2, . . . , ak,b1, b2, . . . br, θ) are
parameters and p(x) is the ascending factorial function, i.e.

p(x) =p(p+ 1)(p+ 2) . . . (p+ x− 1), p ∈ R, x ∈ N,

p(0) =1, p ∈ R.

The constant C is a normalization constant, which can be expressed using the general-
ized Gauss hypergeometric series kFr(a1, a2, . . . , ak; b1, b2, . . . , br; θ) (see Abramowitz
and Stegun, 1972) as

C =

[∑
x∈T

Px

]−1

= [kFr(a1, a2, . . . , ak; b1, b2, . . . , br; θ)]
−1.

The Kemp-Dacey-hypergeometric family is a very wide family of discrete distribu-
tions. Hence we restrict the search for distributions belonging to the family of resistant
distributions by fixing k = 2 and r = 1. This restriction implies

Px =
Ca

(x)
1 a

(x)
2 θx

x!b
(x)
1

, x ∈ T,
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and consequently,

1−
P ∗
j+1(a1, a2; b1; θ)

P ∗
j (a1, a2; b1; θ)

1−
P ∗
j+1(α1, α2; β1; η)

P ∗
j (a)

=

1− (a1 + j)(a2 + j)θ

(1 + j)(b1 + j)

1− (α1 + j)(α2 + j)η

(1 + j)(β1 + j)

. (2.17)

In order to get rid of j in (2.17), we propose two different sets of parameter
restrictions. These parameter restrictions also reduce the dimension of parametric
space from four to one, hence the previous results become applicable. The first set of
restrictions, θ = 1, a1 = b1, eliminates j from (2.17) but they do no yield a proper
distribution1.

The other set of restrictions is:

θ = 1, a2 = 1, b1 = B, (2.18)

B is a fixed constant from parametric space of parameter b1. The only remaining free
parameter a1 is further denoted as a. Then the probability mass function is

Px(a) =
Ca(x)1(x)

x!B(x)
=
Ca(x)

B(x)
, x = 0, 1, 2, . . . , (2.19)

where C is a normalization constant. We consider a > 0 and B > a+2 to ensure non-
negative values of the probability mass function and to secure the validity of the Gauss
summation theorem, which is widely used in the computations below. The restrictions
(2.18) result in

1− Pj+1(a)

Pj(a)

1− Pj+1(λ)

Pj(λ)

1− a+ j

B + j

1− λ+ j

B + j

=
B + j − a− j

B + j − λ− j
=
B − a

B − λ
,

which is obviously independent of j. The necessary condition, according to Theorem
2, is fulfilled. Therefore, the distribution (2.19) might belong to the family of resistant
distributions. Validity of the condition (2.10) must be investigated.

To evaluate the veracity of the condition (2.10) it is necessary to find C:

C =

[
∞∑
x=0

a(x)

B(x)

]−1

= [2F1(a, 1;B; 1)]−1 =

[
Γ(B)Γ(B − a− 1)

Γ(B − a)Γ(B − 1)

]−1

=
B − a− 1

B − 1
,

The Gauss summation theorem and a property of the Gamma function (Γ(t + 1) =

tΓ(t)) were used. The probability P0(a) takes then the value

P0(a) =
B − a− 1

B − 1
,

1In the derivation of the constant C, a condition a2 < 0 arises. However, it is easy to see that
P0 = C and P1 = Ca2, which fails to ensure the non-negative probabilities.
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and for the function f(s+ 1;λ) it holds

f(s+ 1;λ) =
Ps+1(λ)

Ps(λ)
=
λ+ s

B + s
.

Combining last two equations with (2.10), the aim is to verify whether

1− λ

B

B − a− 1

B − 1
+

∞∑
s=1

(
s− (s+ 1)

λ+ s

B + s

)
Ps(a) =

B − λ

B − a
(2.20)

is true. In order to evaluate the sum in the equation above, we split it in four parts,
∞∑
s=1

sPs(a)− λ
∞∑
s=1

Ps(a)

B + s
− (λ+ 1)

∞∑
s=1

sPs(a)

B + s
−

∞∑
s=1

s2Ps(a)

B + s
. (2.21)

The first part is of value
∞∑
s=1

sPs(a) =C
∞∑
s=1

s
a(s)

B(s)
= C

∞∑
s=1

s!a(s)

(s− 1)!B(s)
= C

∞∑
s=0

(s+ 1)!a(s+1)

s!B(s+1)
=

=C
a

B

∞∑
s=0

2(s)(a+ 1)(s)

s!(B + 1)(s)
= C

a

B
2F1(a+ 1, 2;B + 1; 1) =

=C
a

B

Γ(B + 1)Γ(B − a− 2)

Γ(B − a)Γ(B − 1)

=C
a

B

BΓ(B)Γ(B − a− 2)

(B − a− 1)Γ(B − a− 1)Γ(B − 1)
=

=Ca
B − 1

(B − a− 1)(B − a− 2)
=

a

B − a− 2
,

while the second part is (not considering the constant −λ in front of the sum)

∞∑
s=1

Ps(a)

B + s
=C

∞∑
s=1

a(s)

B(s+1)
= C

∞∑
s=0

a(s+1)

B(s+2)
= C

∞∑
s=0

a(a+ 1)(s)

B(B + 1)(B + 2)(s)
=

=
Ca

B(B + 1)

∞∑
s=0

(a+ 1)(s)1(s)

(B + 2)(s)s!
=

Ca

B(B + 1)
2F1(a+ 1, 1;B + 2; 1) =

=
Ca

B(B + 1)

Γ(B + 2)Γ(B − a)

Γ(B − a+ 1)Γ(B + 1)
=

Ca

B(B + 1)

B + 1

B − a
=

=
a(B − a− 1)

B(B − 1)(B − a)
.
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For the third part (again without the constant −(λ+ 1)) it holds
∞∑
s=1

sPs(a)

B + s
=C

∞∑
s=1

sa(s)

B(s+1)
= C

∞∑
s=1

s!a(s)

(s− 1)!B(s+1)
= C

∞∑
s=0

(s+ 1)!a(s+1)

s!B(s+2)
=

=C
∞∑
s=0

2(s)a(a+ 1)(s)

s!B(B + 1)(B + 2)(s)
=

Ca

B(B + 1)
2F1(a+ 1, 2;B + 2; 1) =

=
Ca

B(B + 1)

Γ(B + 2)Γ(B − a− 1)

Γ(B − a+ 1)Γ(B)
=

=
Ca

B(B + 1)

(B + 1)Γ(B + 1)Γ(B − a− 1)

(B − a)Γ(B − a)Γ(B)
=

=
Ca

B

B

(B − a)(B − a− 1)
=

a

(B − 1)(B − a)
,

and the fourth part yields
∞∑
s=1

s2Ps(a)

B + s
=C

∞∑
s=1

s2a(s)

B(s+1)
=
C

B

∞∑
s=1

s!s2a(s)

s!(B + 1)(s)
=

=
C

B

(
∞∑
s=1

(s+ 2)!a(s)

s!(B + 1)(s)
− 3

∞∑
s=1

(s+ 1)!a(s)

s!(B + 1)(s)
+

∞∑
s=1

s!a(s)

s!(B + 1)(s)

)
=

=
C

B

(
2

∞∑
s=1

3(s)a(s)

s!(B + 1)(s)
− 3

∞∑
s=1

2(s)a(s)

s!(B + 1)(s)
+

∞∑
s=1

1(s)!a(s)

s!(B + 1)(s)

)
=

=
C

B
[2(2F1(a, 3;B + 1; 1)− 1)− 3(2F1(a, 2;B + 1; 1)− 1)+

+ (2F1(a, 1;B + 1; 1)− 1)] =

=
2C

B

(
Γ(B + 1)Γ(B − a− 2)

Γ(B − a+ 1)Γ(B − 2)
− 1

)
−

− 3C

B

(
Γ(B + 1)Γ(B − a− 1)

Γ(B − a+ 1)Γ(B − 1)
− 1

)
+

+
C

B

(
Γ(B + 1)Γ(B − a)

Γ(B − a+ 1)Γ(B)
− 1

)
=

=
2C

B

(
B(B − 1)Γ(B − 1)Γ(B − a− 2)

(B − a)(B − a− 1)Γ(B − a− 1)Γ(B − 2)
− 1

)
−
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− 3C

B

(
BΓ(B)Γ(B − a− 1)

(B − a)Γ(B − a)Γ(B − 1)
− 1

)
+
C

B

(
B

B − a
− 1

)
=

=
2C

B

(
B(B − 1)(B − 2)

(B − a)(B − a− 1)(B − a− 2)
− 1

)
−

− 3C

B

(
B(B − 1)

(B − a)(B − a− 1)
− 1

)
+

a(B − a− 1)

B(B − 1)(B − a)
=

=
2

B − a
− 2(B − a− 1)

B(B − 1)
− 3

B − a
− 3(B − a− 1)

B(B − 1)
+

+
a(B − a− 1)

B(B − 1)(B − a)
=

=
B − a− 1

B(B − 1)
− 1

B − a
+

a(B − a− 1)

B(B − 1)(B − a)
,

where we used a factorial equality

s!s2 = (s+ 2)!− 3(s+ 1)! + s!.

Having all four parts of (2.21), we can write (2.20) as:

1− λ(B − a− 1)

B(B − 1)
+

a

B − a− 2
− (λ+ 1)a

(B − a)(B − 1)
−

− λa(B − a− 1)

B(B − 1)(B − a)
− B − a− 1

B(B − 1)
+

1

B − a
− a(B − a− 1)

B(B − 1)(B − a)
=
B − λ

B − a
,

which can be simplified to

B − a− λ(B − a)(B − a− 1)

B(B − 1)
+

a(B − a)

B − a− 2
− (λ+ 1)aB

B(B − 1)
−

− λa(B − a− 1)

B(B − 1)
− (B − a)(B − a− 1)

B(B − 1)
+ 1− a(B − a− 1)

B(B − 1)
= B − λ,

and further to

B − a− λ+
a(B − a)

B − a− 2
− a

B − 1
− B − a− 1

B − 1
+ 1 = B − λ,

which is the same as

a(B − 1) = 0.
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To conclude, a distribution with the probability mass function (2.19) belongs to the
family of resistant distributions if and only if a = 0 or B = 1. However, neither of these
conditions can be fulfilled as it was stated before, right above (2.19). The candidate
for the family of resistant distributions discussed in this section turned out to belong
to the sensitive family.

For the time being, it remains an open question whether the family of resistant
distributions consists of only two distributions (the geometric distribution and the
Salvia-Bolinger distribution) or if there are more of them.

29



3 Iterated partial summations

In this chapter we propose some solutions regarding iterated partial summations. It is
possible to apply partial summation (1.2) repeatedly, i.e.,

P (1)
x =C1

∞∑
j=x

g(j)P ∗
j , x = 0, 1, 2, . . . ,

P (2)
x =C2

∞∑
j=x

g(j)P
(1)
j , x = 0, 1, 2 . . . ,

...

P (n)
x =Cn

∞∑
j=x

g(j)P
(n−1)
j , x = 0, 1, 2 . . . ,

...

Ci is a normalization constant which ensures that {P (i)
x }∞x=0, also called the i-th descen-

dant, is a proper distribution for i = 1, 2, 3, . . . . The distribution {P ∗
x}∞x=0 is hereafter

called the original parent. As it was mentioned in Chapter 1, Mačutek (2006) proves
that if there exists

p = lim
j→∞

P ∗
j+1

P ∗
j

,

the iterated geometric partial summation yields the geometric distribution with the
parameter p as the limit distribution. One of the aims of our research is to examine
the behaviour of other types of iterated partial summations. At first we perform
a computational study for iterated partial summations with finite-support original
parents. Then we show the relation between the iterated partial summations and
the power method, which is an apparatus from the matrix theory designed to find
dominant eigenvalues and eigenvectors of matrices. The power method is applied to
several particular partial summations.
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3.1 Computational study

The presented computational study inquires about the limit distribution

lim
i→∞

P (i)
x , x = 0, 1, 2, . . . .

In order to obtain some preliminary insight in this field, a computational study
using the R software was performed. Basically, in the R software it is possible to work
only with objects of finite length. Therefore, the computational study is restricted
by the choice of parent distribution. Only parent distributions with finite supports
are considered, which ensures that the ith descendant has also finite support, i =

1, 2, 3, . . . .

We show the results of the computational study with the binomial distribution
playing the role of the original parent. We use two different types of partial summation,
the Salvia-Bolinger and the Poisson partial summation.

3.1.1 Salvia-Bolinger partial summation

The probability mass function of the Salvia-Bolinger distribution is

Q0 =a,

Qx =

a
x∏

k=1

(k − a)

(x+ 1)!
, 0 < a ≤ 1, x = 1, 2, 3, . . . .

This distribution is invariant with respect to the partial summation (1.2) for

g(x) = 1− Qx+1

Qx

= 1− x+ 1− a

x+ 2
=
a+ 1

x+ 2
, x = 0, 1, 2, . . . .

Having binomial distribution with parameters n, p as the original parent,

P ∗
x =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n,

the descendant distributions are computed iteratively for several selected parameter
values using the R software:

1.
n∑

j=x

(
a+ 1

j + 2

)(
n

j

)
pj(1− p)n−j is computed for each x = 0, 1, 2, . . . , n,

2. C1 is determined as

[
n∑

x=0

n∑
j=x

(
a+ 1

j + 2

)(
n

j

)
pj(1− p)n−j

]−1

,
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3. P (1)
x , x = 0, 1, 2, . . . , n are obtained by combining the results from previous two

steps;

4.
n∑

j=x

(
a+ 1

j + 2

)
P

(1)
j is computed for each x = 0, 1, 2, . . . , n,

5. C2 is determined as

[
n∑

x=0

n∑
j=x

(
a+ 1

j + 2

)
P

(1)
j

]−1

,

6. P (2)
x , x = 0, 1, 2, . . . , n are obtained combinming the results from previous two

steps;

7. etc.

The steps 1.-3. describe the first iteration, the steps 4.-6. stand for the second iteration,
etc. The procedure is run for several combinations of values of the parameters n, p, a.
The number of iterations is set to 10000. Hence, for each combination of parameters
we obtain a sequence of 10000 partial-sum distributions {P (1)

x }nx=0, {P (2)
x }nx=0, . . . ,

{P (10000)
x }nx=0.

The script for the R software to perform the procedure for the choice of parameters
n = 6, p = 0.2 and a = 0.5 is following,

n<-6; p<-0.2; a<-0.5

desc<-matrix(0,ncol=n+1,nrow=10001)

for(i in 1:ncol(desc))

desc[1,i]<-choose(n,i-1)*p^(i-1)*(1-p)^(n-i+1)

for(r in 2:nrow(desc)){

for(x in 0:n)

for(j in x:n)

desc[r,x+1]<-desc[r,x+1]+((a+1)/(j+2))*desc[r-1,j+1]

desc[r,]<-desc[r,]/sum(desc[r,])}

yielding a matrix desc as a result. The ith row of the matrix desc contains the
probabilities of the (i − 1)th descendant distribution. The study reveals that the
41th descendant is the deterministic distribution (P (41)

0 = 1 and all other probabilities
are zero), which is necessarily the limit distribution. Some of the descendants are
depicted in the Figure 3.1, the darker the green colour, the latter the descendant. The
limit distribution, deterministic in this case, is illustrated by the black colour and the
original parent, the binomial distribution, is of the blue colour. The dots, representing

32



0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

p
m

f

the original parent

the first descendant

the second descendant

the third descendant

the limit distribution

Figure 3.1: Descendants of the binomial distribution under the iterated Salvia-Bolinger
partial summations

probability mass functions, are connected for a better orientation. We note that the
deterministic distribution is a special case of the Salvia-Bolinger distribution, for a = 1.

Results of iterated application of Salvia-Bolinger partial summation with binomial
distribution as the original parent, for different combinations of parameters n, p, a, are
shown in Appendix A. The appendix also contains results for different choices of the
original parent distribution. All of the examined combinations of parameters yield the
deterministic limit distribution.
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3.1.2 Poisson partial summation

The Poisson distribution has the probability mass function

Qx =
e−aax

x!
, a ≥ 0, x = 0, 1, 2, . . . ,

a is the parameter and it is invariant with respect to the summation (1.2) for

g(x) = 1− Qx+1

Qx

= 1− a

x+ 1
, x = 0, 1, 2, . . . .

The procedure of the computational study in this case is analogical to the previous
one. The script for the R software is provided here:

n<-6; p<-0.2; a<-0.5

desc<-matrix(0,ncol=n+1,nrow=10001)

for(i in 1:ncol(desc))

desc[1,i]<-choose(n,i-1)*p^(i-1)*(1-p)^(n-i+1)

for(r in 2:nrow(desc)){

for(x in 0:n)

for(j in x:n)

desc[r,x+1]<-desc[r,x+1]+(1-a/(j+1))*desc[r-1,j+1]

desc[r,]<-desc[r,]/sum(desc[r,])}

with the choice of the parameters n = 6, p = 0.2 and a = 0.5, the same as in the
previous example. When a closer look at the matrix desc is taken, one can notice
that the descendant {P (1265)

x }6x=0 is equal to all of the following descendants, hence, we
consider the 1265th descendant to be the limit distribution. Its probabilities are

{P (1265)
x }6x=0 =

= (0.6410500, 0.2958692, 0.0568979, 0.0058357, 0.0003367, 0.0000104, 0.0000001).

(3.1)

The situation is depicted in Figure 3.2. The blue colour is again reserved for the original
parent - the binomial distribution, green colours represent descendant distributions and
black is for the limit distribution.

For a few other choices of parameter values or the original parent see Appendix A.
The limit distributions are not deterministic, in contrast to the Salvia-Bolinger partial
summation.
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Figure 3.2: Descendants of the binomial distribution under the iterated Poisson partial
summations

3.2 Power method

In this section we present analysis of the power method’s use in the field of iterated
partial summations, which is also the scope of our recently published paper Koščová
et al. (2020).

Let {P ∗
j }∞j=0 and {Pj}∞j=0 be discrete probability distributions defined on the set of

non-negative integers. A general form of partial-sums distributions was introduced in
Mačutek (2003). The distribution {Pj}∞j=0 is the result of a partial summation applied
to {P ∗

j }∞j=0 if

Px = c
∞∑
j=x

g(j)P ∗
j , x = 0, 1, 2, . . . , (3.2)
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where g(j) is a real function and c a normalization constant (which ensures that the
sequence {Pj}∞j=0 is a proper probability distribution, i.e., it sums to 1). The distri-
butions {P ∗

j }∞j=0 and {Pj}∞j=0 are called parent and descendant, respectively. Some
special cases of (3.2) are mentioned also in the comprehensive monograph on discrete
distributions Johnson et al. (2005), pp. 508-512.

Hereafter, we restrict our considerations to parent distributions

{P ∗
0 , P

∗
1 , P

∗
2 , . . . , P

∗
S−1},

i.e. to discrete distributions defined on a finite support of the size S. As the proba-
bilities P ∗

j in (3.2) are zero for j ≥ S in this case, the partial summation (3.2) can be
written as

Px = c

S−1∑
j=x

g(j)P ∗
j , x = 0, 1, . . . , S − 1,

or equivalently as

P = cAP∗, (3.3)

where P and P∗ are the vectors of probabilities

(P0, P1, . . . , PS−1)
⊤

and

(P ∗
0 , P

∗
1 , . . . , P

∗
S−1)

⊤,

respectively. Matrix A is of dimension S × S, with the following structure:

A =



g(0) g(1) g(2) g(3) . . . g(S − 1)

0 g(1) g(2) g(3) . . . g(S − 1)

0 0 g(2) g(3) . . . g(S − 1)

0 0 0 g(3) . . . g(S − 1)
... ... ... ... . . . ...
0 0 0 0 . . . g(S − 1)


. (3.4)

The partial summation (3.2) can be applied iteratively as we describe in the
beginning of this chapter, however here we are restricted to finite-support parents
only. The descendant distribution becomes a parent of another distribution, i.e.
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P (1)
x =c1

S−1∑
j=x

g(j)P ∗
j , x = 0, 1, . . . , S − 1 ,

P (2)
x =c2

S−1∑
j=x

g(j)P
(1)
j , x = 0, 1, . . . , S − 1 ,

...

P (n)
x =cn

S−1∑
j=x

g(j)P
(n−1)
j , x = 0, 1, . . . , S − 1 ,

...

with ci, i = 1, 2, 3, . . . being normalization constants. The distribution

{P ∗
x}S−1

x=0

will be called the original parent. We will now investigate properties of the sequence of
the descendant distributions, especially the question under which conditions the limit
of this sequence exists. We remind that he existence of the limit for iterated par-
tial summations applied to discrete distributions with infinite supports for a constant
function g(j) was proved in Mačutek (2006).

In the following, we will not consider the normalization constants. Then the
matrix notation (see (3.3)) of the iterated partial summations is

Q(1) =AP∗,

Q(2) =AQ(1) = AAP∗ = A2P∗,

Q(3) =AQ(2) = AA2P∗ = A3P∗,

...

Q(n) =AQ(n−1) = AnP∗,

...

The i-th descendant probability distribution can be obtained by the normalization of
the vector Q(i) = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
S−1)

⊤.
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Denote ∥U∥1, ∥U∥2 the L1-norm and the L2-norm of vector U , respectively. If the
limit of the sequence of the descendant distributions exists, it can be written as

P(∞) = lim
n→∞

Q(n)

∥Q(n)∥1
= lim

n→∞

AnP∗

∥AnP∗∥1
. (3.5)

The power method is one of computational approaches to the problem of finding
matrix eigenvalues (see e.g. Golub and Van Loan (1996), pp. 330-332). We apply it to
matrix A (denote its eigenvalues by λ0, . . . , λS−1; we remind that in general they need
not be distinct) and vector P∗ from (3.3). To satisfy the conditions of the method,
suppose that A is diagonalizable and that it has a unique dominant eigenvalue λk (i.e.,
there exists k such that |λk| > |λi|, i ̸= k).

If P∗ is not a non-dominant eigenvector of A and, in addition, if P∗ is such a linear
combination of the eigenvectors of A that the coefficient corresponding to the dominant
eigenvector is non-zero, then

lim
n→∞

AnP∗

∥AnP∗∥2
= V,

where V is the dominant eigenvector of A (i.e., the one which corresponds to the
dominant eigenvalue). Under these conditions, the power method implies the existence
of limn→∞ P(n), see (3.5), with

P(∞) = lim
n→∞

P(n) =
V

∥V ∥1
.

The matrix A from (3.4) is an upper triangular matrix, which means that its eigenvalues
are its diagonal entries, i.e.

λj = g(j), j = 0, 1, . . . , S − 1.

Consequently, to determine the dominant eigenvalue λD of A it is necessary to find

D = arg max
j∈{0,1,...,S−1}

|g(j)|.

Let D = k, i.e., let the dominant eigenvalue be λk = g(k). The eigenvector
corresponding to the dominant eigenvalue λk is the solution of the of linear equation

AV = λkV,

or, equivalently,

(A− λkI)V = 0.

For matrix A from (3.3) we obtain
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                    g
(0
)
−
g
(k
)

g
(1
)

g
(2
)

..
.

g
(k

−
1
)

g
(k
)

g
(k

+
1)

..
.

g
(S

−
2)

g
(S

−
1)

0
g
(1
)
−
g
(k
)

g
(2
)

..
.

g
(k

−
1
)

g
(k
)

g
(k

+
1)

..
.

g
(S

−
2)

g
(S

−
1)

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. .
.

. . .
. . .

0
0

0
..
.

g
(k

−
1)

−
g
(k
)

g
(k
)

g
(k

+
1)

..
.

g
(S

−
2)

g
(S

−
1)

0
0

0
..
.

0
0

g
(k

+
1)

..
.

g
(S

−
2)

g
(S

−
1)

0
0

0
..
.

0
0

g
(k

+
1)

−
g
(k
)

..
.

g
(S

−
2)

g
(S

−
1)

. . .
. . .

. . .
. .

.
. . .

. . .
. . .

. .
.

. . .
. . .

0
0

0
..
.

0
0

0
..
.

g
(S

−
2)

−
g
(k
)

g
(S

−
1)

0
0

0
..
.

0
0

0
..
.

0
g
(S

−
1)

−
g
(k
)                                        v 0 v 1 . . .

v k
−
1

v k v k
+
1 . . .

v S
−
2

v S
−
1

                    =
0
.
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This system of linear equations yields the solution

V =



t

t
(
1− g(0)

g(k)

)
t
(
1− g(0)

g(k)

)(
1− g(1)

g(k)

)
...

t
∏k

j=1

(
1− g(j−1)

g(k)

)
0
...
0


, t ∈ R. (3.6)

3.3 Demonstration of the power method’s use

We present a simple example of finding the limit distribution P(∞) for iterated Poisson
partial summation when the original parent P∗ is of the support size S = 2. The
iterated Poisson partial summation can be written as

P (1)
x =c1

1∑
j=x

(
1− a

j + 1

)
P ∗
j , x = 0, 1 ,

P (2)
x =c2

1∑
j=x

(
1− a

j + 1

)
P

(1)
j , x = 0, 1 ,

...

P (n)
x =cn

1∑
j=x

(
1− a

j + 1

)
P

(n−1)
j , x = 0, 1 ,

...

where a is the parameter of the Poisson distribution. In this example the matrix A is

A =

(
1− a 1− a

2

0 1− a
2

)

and its eigenvalues are λ1 = 1−a, λ2 = 1− a
2
. For a > 4

3
, λ1 is the dominant eigenvalue,

while for a < 4
3
, λ2 is dominant.

Consider a > 4
3
. The aim is to find the eigenvector V correspondent to the

dominant eigenvalue, which is now λD = λ1 = 1− a,
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(A− λ1I)V =0,

((
1− a 1− a

2

0 1− a
2

)
−

(
1− a 0

0 1− a

))(
v1

v2

)
=0,

(
0 1− a

2

0 a
2

)(
v1

v2

)
=0,

((
1− a

2

)
v2

a
2
v2

)
=0,

therefore

V =

(
t

0

)
, t ∈ R.

Under the conditions that both elements of the original parent are non-zero and the
original parent is not equal to the non-dominant eigenvector of A, the distribution P(∞)

exists and it holds

P(∞) = lim
n→∞

P(n) =
V

∥V ∥1
=

(
1

0

)
.

The consequences of using power method while the mentioned conditions are not ful-
filled are discussed later in this chapter.

Now let a < 4
3
. The dominant eigenvalue in this case is λD = λ2 = 1− a

2
and for

its correspondent eigenvector it holds

(A− λ2I)W =0,

((
1− a 1− a

2

0 1− a
2

)
−

(
1− a

2
0

0 1− a
2

))(
w1

w2

)
=0,

(
−a

2
1− a

2

0 0

)(
w1

w2

)
=0,

−a
2
w1 +

(
1− a

2

)
w2 =0,

w2 =
a

2− a
w1,
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which means

W =

(
t
a

2−a
t

)
, t ∈ R.

Again, under the conditions that both elements of the original parent are non-zero and
the original parent is not equal to the non-dominant eigenvector of A, the P(∞) exists,
with

P(∞) = lim
n→∞

P(n) =
W

∥W∥1
=

W

w1 + w2

=

(
2−a
2
a
2

)
.

If a = 4
3
, then λ1 = λ2. It means that the dominant eigenvalue of A is not

unique. Hence the power method does not work and cannot be used to find the limit
distribution.

3.4 Katz family

Discrete distribution {R∗
j}

n/∞
j=0 belongs to the Katz family (see e.g. Wimmer and Alt-

mann (1999), pp. 324-325) with the parameters α ≥ 0, β < 1 if

Rx+1

Rx

=
α + βx

x+ 1
, x = 0, 1, 2, . . . .

When α + βn < 0, n ∈ {1, 2, . . . } then Rn+j = 0, for j = 1, 2, . . . . The Katz partial
summation, i.e. the summation

Px =
∞∑
j=x

g(j)P ∗
j , x = 0, 1, 2, . . .

with

g(j) = 1− Rj+1

Rj

= 1− α + βj

j + 1
=

(1− α) + (1− β)j

j + 1
, j = 0, 1, 2, . . . (3.7)

was analyzed in Mačutek (2001).

Consider a finite-support discrete distribution

{P ∗
0 , P

∗
1 , P

∗
2 , . . . , P

∗
S−1}.

As for function g(j) from (3.7) it holds

∂g(j)

∂j
=

α− β

(j + 1)2
,
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the function g(j) is increasing if α > β, constant if α = β, and decreasing if α < β.
Thus, if α ̸= β, all eigenvalues of matrix A are distinct, which is a sufficient condition for
its diagonalizability (see Horn and Johnson (2013)). If, in addition, |g(0)| ̸= |g(S−1)|,
there exists the unique dominant eigenvalue and the power method can be applied.
The dominant eigenvector V from (3.6) can be expressed as

V =



v0

v1

v2
...
vk

vk+1

...
vS−1


=



t

t α−β
(1−α)+(1−β)k

k

t
(

α−β
(1−α)+(1−β)k

)2
k(k−1)

2

...

t
(

α−β
(1−α)+(1−β)k

)k
k!
k!

0
...
0



, t ∈ R.

We remind that k is the position of the dominant eigenvalue λD. We use the parameter
t to scale the vector V so that the sum of the vector elements is equal to 1, i.e.

t =

(
(1− α) + (1− β)k

(1− β)(k + 1)

)k

.

Therefore,

P(∞) =



P
(∞)
0

P
(∞)
1

P
(∞)
2
...

P
(∞)
k

P
(∞)
k+1
...

P
(∞)
S−1


=



(
1− α−β

(1−β)(k+1)

)k
k α−β
(1−β)(k+1)

(
1− α−β

(1−β)(k+1)

)k−1

(
k
2

) (
α−β

(1−β)(k+1)

)2 (
1− α−β

(1−β)(k+1)

)k−2

...(
α−β

(1−β)(k+1)

)k
0
...
0



,

which means that

P(∞) ∼ Bin

(
k;

α− β

(1− β)(k + 1)

)
.

However, as the function g(j) from (3.7) is strictly monotonic in j if α ̸= β, there
are only two possible values of k, either 0 or S − 1. If k = S − 1, the iterated partial
summations have the limit which is the binomial distribution with parameters S − 1
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and α−β
(1−β)S

. On the other hand, if k = 0, the distribution P(∞) degenerates to the
deterministic distribution.

To inspect whether k is equal to 0 or to S−1 for a particular choice of parameters
of the Katz family - i.e. for the parameters which appear in function g(j) from (3.7) -
it is sufficient to compare the values of |g(0)| and |g(S − 1)|, which means to analyze
the inequalities

|1− α| S
∣∣∣∣(1− α) + (1− β)(S − 1)

S

∣∣∣∣ . (3.8)

(A) If α = β, the conditions under which the power method can be applied are not
satisfied; however, this case is solved in Mačutek (2006)1.

(B) If α < β, the limit distribution is deterministic.

(C) If α > β

(1) and if α ≤ 1, the limit distribution is binomial,

(2) while if α > 1, additional conditions come into play:

(a) If α + β − 2 ≥ 0, the limit distribution is deterministic.

(b) If α + β − 2 < 0, the limit behaviour depends on the support size S.

(i) If β > 2S−(S+1)α
S−1

, the limit distribution is deterministic, while

(ii) for β < 2S−(S+1)α
S−1

the iterated summations converge to the binomial
distribution.

(iii) In case β = 2S−(S+1)α
S−1

, the power method cannot be used (the dom-
inant eigenvalue of the matrix A is not unique).

Figure 3.3 depicts the parametric space of the Katz partial summations. The
iterated Katz partial summations with parameters from the dark grey area (triangle
with vertices in (0,0), (1,1), (0,1) and the area above the half-line β = 2−α and below
the half-line β = 1) result in the deterministic distribution. Those with parameters
from the light grey area result in the binomial distribution

Bin

(
S − 1;

α− β

S(1− β)

)
.

1The power method cannot be applied if α = β; however, it was shown in Mačutek (2006) that
in this particular summation the sequence of the descendant distributions converges to the geometric
distribution for a wide family of original parents. Specifically, if the original parent is a distribution
with a finite support, the limit distribution is deterministic (which can be considered a special case of
the geometric distribution).
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We remind that these results are valid regardless of the original parent distribution

{P ∗
0 , P

∗
1 , P

∗
2 , . . . , P

∗
S−1}

except that it is a non-dominant eigenvector of A. The limit behaviour of the iterated
Katz partial summations with parameters from the dotted area depends also on the
size of support S. If

β =
2S − (S + 1)α

S − 1
, (3.9)

the existence of the limit distribution remains an open question (as the power method
cannot be applied in this case). Figures 3.4 and 3.5 show the situation for fixed support
sizes S = 4 and S = 50, respectively. The white line represents the cases where the
power method cannot be applied (equation (3.9) is true).

α

β

0

1

1 24
3

deterministic

deterministic

binomial

Figure 3.3: The parametric space of the Katz family

In the next four subsections, we present detailed results of finding the limit dis-
tribution for particular types of iterated partial summation from the Katz family of
discrete distributions. We focus on summations related to the most common distribu-
tions, namely iterated Poisson partial summation, iterated binomial partial summation,
iterated negative binomial partial summation and iterated geometric partial summa-
tion.
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Figure 3.4: The parametric space of the Katz family, S = 4
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Figure 3.5: The parametric space of the Katz family, S = 50
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3.4.1 Iterated Poisson partial summation

The Poisson distribution with

Qx =
e−aax

x!
, a ≥ 0, x = 0, 1, 2, . . .

belongs to the Katz family of discrete distributions for α = a and β = 0. The function
g(·) corresponding to Poisson partial summation is

g(j) = 1− Qj+1

Qj

= 1− a

j + 1
, j = 0, 1, 2, . . . .

The iterated Poisson partial summation is then

P (1)
x =c1

S−1∑
j=x

(
1− a

j + 1

)
P ∗
j , x = 0, 1, . . . , S − 1 ,

P (n)
x =cn

S−1∑
j=x

(
1− a

j + 1

)
P

(n−1)
j , x = 0, 1, . . . , S − 1 , n = 2, 3, . . . .

According to the results from the previous section,

(1) if a ≤ 1, the limit distribution is binomial with parameters S − 1 and a

S
,

(2) if a ≥ 2, the limit distribution is deterministic,

(3) if 1 < a < 2, the limit behaviour depends on the relation between a and the
support size S:

(i) if a < 2S

S + 1
, the limit distribution is binomial with parameters S − 1 and

a

S
,

(ii) if a > 2S

S + 1
, the limit distribution is deterministic,

(iii) if a =
2S

S + 1
, the power method cannot be used as the dominant eigenvalue

of the matrix A is not unique.

We can inspect the results obtained by computational study performed in Chapter
3.1. The parameter of the Poisson partial summation was set to a = 0.5 and the original
parent is binomial distribution with n = 6 and p = 0.2. The support size of the original
parent is thus S = 7. As a = 0.5 ≤ 1, the limit distribution is Bin(S − 1, a

S
). The

probability mass function of Bin(6, 0.5
7
) is
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{Px}6x=0 =

(
6

x

)(
0.5

7

)x(
1− 0.5

7

)6−x
.
=

.
=(0.6410500, 0.2958692, 0.0568979, 0.0058357, 0.0003367, 0.0000104, 0.0000001),

which corresponds to (3.1).

3.4.2 Iterated binomial partial summation

The binomial distribution with parameters p, N and the probability mass function

Qx =

(
N

x

)
px(1− p)N−x, 0 ≤ p ≤ 1, N = 0, 1, 2, . . . , x = 0, 1, . . . , N

is another member of the Katz family of discrete distributions. It is the case when
α = Np

1−p
and β = − p

1−p
. The function g(·) defining the type of partial summation is

now

g(j) = 1−

p

1− p
(N − j)

j + 1
, j = 0, 1, . . . , N

and we define

g(j) = 0, j = N + 1, N + 2, N + 3, . . . .

Let us denote M = min{S − 1, N}. The iterated binomial partial summation is

P (1)
x =c1

M∑
j=x

1−

p

1− p
(N − j)

j + 1

P ∗
j , x = 0, 1, . . . ,M,

P (n)
x =cn

M∑
j=x

1−

p

1− p
(N − j)

j + 1

P
(n−1)
j , x = 0, 1, . . . ,M, n = 2, 3, . . . .

It leads to the following results.

(1) If p ≤ 1

N + 1
, the limit distribution is binomial with the parameters M and

p(N + 1)

M + 1
.

(2) If p > 1

N + 1
, additional conditions come into consideration:
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(a) If p ≥ 2

N + 1
, the limit distribution is deterministic.

(b) If p < 2

N + 1
, the limit behaviour depends on the support size S:

(i) If S < p(N + 1)

2− p(N + 1)
, the limit distribution is deterministic, while

(ii) for S > p(N + 1)

2− p(N + 1)
the iterated summations converge to the binomial

distribution with the parameters M and p(N + 1)

M + 1
.

(iii) In case S =
p(N + 1)

2− p(N + 1)
, the power method cannot be used (the domi-

nant eigenvalue of the matrix A is not unique).

deterministic

binomial

1

0 1 2 3 4 N

p

Figure 3.6: The parametric space of the binomial distribution

Figure 3.6 depicts the parametric space of the binomial partial summations. The
iterated binomial partial summations with parameters from the dark grey area (the
area above curve p = 2

n+1
) result in the deterministic distribution. Those with param-

eters from the light grey area (the area below curve p = 1
n+1

) result in the binomial
distribution

Bin

(
M ;

p(N + 1)

M + 1

)
.

We remind that these results are valid regardless of the original parent distribution

{P ∗
0 , P

∗
1 , P

∗
2 , . . . , P

∗
S−1}

except that it is a non-dominant eigenvector of A. The limit behaviour of the iterated
binomial partial summations with parameters from the dotted area (between curves
p = 1

n+1
and p = 2

n+1
) depends also on the size of support S. If

S =
p(N + 1)

2− p(N + 1)
, (3.10)
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the existence of the limit distribution remains an open question (as the power method
cannot be applied in this case). However, only vertical cross-sections of this paramet-
ric space are relevant because the parameter N of binomial distribution is a natural
number.

deterministic

binomial

1

0 1 2 3 4 N

p

Figure 3.7: The parametric space of the binomial distribution, S=50

deterministic

binomial

1

0 1 2 3 4 N

p

Figure 3.8: The parametric space of the binomial distribution, S=4

Figures 3.7 and 3.8 show the situation for fixed support sizes S = 50 and S = 4,
respectively. The white line represents the cases where the power method cannot be
applied (equation (3.10) is true).

3.4.3 Iterated negative binomial partial summation

The next member of the Katz family of discrete distributions is the negative binomial
distribution with the probability mass function

Qx =

(
k + x− 1

x

)
pk(1− p)x, 0 < p ≤ 1, k ≥ 0, x = 0, 1, 2, . . . .
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Its parameters k ≥ 0 and 0 < p ≤ 1 are related to α and β as α = (1 − p)k and
β = 1− p. The partial summation under examination defined by

g(j) = 1− Qj+1

Qj

=
1− (1− p)k + pj

j + 1

is then of the form

P (1)
x =c1

S−1∑
j=x

1− (1− p)k + pj

j + 1
P ∗
j , x = 0, 1, . . . , S − 1 ,

P (n)
x =cn

S−1∑
j=x

1− (1− p)k + pj

j + 1
P

(n−1)
j , x = 0, 1, . . . , S − 1 , n = 2, 3, . . . .

The resulting limit distribution can be determined by the following conditions.

(A) If k = 1, the power method is not applicable; however this case is solved in
Mačutek (2006).

(B) If k < 1, the limit distribution is deterministic.

(C) If k > 1 and

(1) if p ≥ 1− 1

k
, the limit distribution is binomial with the parameters S − 1 and

(1− p)(k − 1)

Sp
while

(2) if p < 1− 1

k
, additional conditions come into consideration:

(a) If p ≤ 1− 2

k + 1
, the limit distribution is deterministic.

(b) If p > 1− 2

k + 1
, the limit behaviour depends on the support size S:

(i) If S <
(k − 1)(1− p)

1− k + p+ pk
, the limit distribution is deterministic, while

for

(ii) S >
(k − 1)(1− p)

1− k + p+ pk
the iterated summations converge to the bino-

mial distribution with the parameters S − 1 and (1− p)(k − 1)

Sp
.

(iii) In case S =
(k − 1)(1− p)

1− k + p+ pk
, the power method cannot be used (the

dominant eigenvalue of the matrix A is not unique).

Figure 3.9 depicts the parametric space of the negative binomial distribution. The
iterated negative binomial partial summations with parameters from the dark grey area
(square with vertices in (0,0), (1,0), (1,1), (0,1) and the area below curve p = 1− 2

k+1
)
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Figure 3.9: The parametric space of the negative binomial distribution

result in the deterministic distribution. Those with parameters from the light grey area
(above curve p = 1− 1

k
) result in the binomial distribution

Bin

(
S − 1;

(1− p)(k − 1)

Sp

)
.

We remind that these results are valid regardless of the original parent distribution

{P ∗
0 , P

∗
1 , P

∗
2 , . . . , P

∗
S−1}

except that it is a non-dominant eigenvector of A. The limit behaviour of the iterated
negative binomial partial summations with parameters from the dotted area (between
curves p = 1− 2

k+1
and p = 1− 1

k
) depends also on the size of support S. If

S =
(k − 1)(1− p)

1− k + p+ pk
(3.11)

the existence of the limit distribution remains an open question (as the power method
cannot be applied in this case).

deterministic
deterministic

binomial1

0 1 2 3 4 k

p

Figure 3.10: The parametric space of the negative binomial distribution, S=4

Figures 3.10 and 3.11 show the situation for fixed support sizes S = 4 and S = 500,
respectively. The white line represents the cases where the power method cannot be
applied (equation (3.11) is true).
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Figure 3.11: The parametric space of the negative binomial distribution, S=500

3.4.4 Iterated geometric partial summation

Another frequently used distribution from the Katz family is the geometric distribution.
It is the case when α = 1 − p and β = 1 − p. The probability mass function of the
geometric distribution is

Qx = p(1− p)x, 0 < p ≤ 1, x = 0, 1, 2, . . . ,

which leads to the function g(·) of a very simple form

g(j) = p.

The iterated geometric partial summation is then

P (1)
x =c1

S−1∑
j=x

pP ∗
j , x = 0, 1, . . . , S − 1 ,

P (n)
x =cn

S−1∑
j=x

pP
(n−1)
j , x = 0, 1, . . . , S − 1 , n = 2, 3, . . . .

As α = β here, the power method is not applicable, because the dominant eigenvalue
is not unique. It can be seen also in (3.8). As it was already mentioned before, the
iterated geometric partial summation is inspected in Mačutek (2006). With the use
of probability generating functions Mačutek (2006) proves the limit distribution is
deterministic for the original parent with a finite support.
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3.5 The trinity of parent, descendant and type of
partial summation

In the first Chapter we emphasize that the partial summations consist of three elements,
the parent distribution, the descendant distribution and the function g(·). Wimmer
and Mačutek (2012) showed that if we fix two of the three elements, the remaining one
is uniquely given. According to our results from Chapter 3.4.1, the limit distribution
P(∞) of the Poisson partial summation is binomial for a ≤ 1. Hence, we have the
elements

1. the parent distribution P(∞) is binomial with the parameters S − 1 and a

S
,

2. the descendant distribution P(∞+1) is binomial with the same parameters,

3. the function g(·) corresponds to the Poisson distribution with the parameter a.

On the other hand, the only partial summation that leaves the binomial distribution
unaltered should be the binomial partial summation with the exact same parameters,
thus the three elements might be also

1. the binomial parent with the parameters S − 1 and a

S
,

2. the binomial descendant with the same parameters,

3. the function g(·) corresponds to the binomial distribution, again with the same
parameters.

This is why the finding of Wimmer and Mačutek (2012) can seem to be false. However,
it is not. Consider the function g(·) corresponding to the binomial distribution with
the parameters S − 1 and a

S
,

gb(x) =1−

(
S − 1

x+ 1

)( a
S

)x+1 (
1− a

S

)S−2−x

(
S − 1

x

)( a
S

)x (
1− a

S

)S−1−x
=

S

S − a

(
1− a

x+ 1

)
,

and on the other hand the function g(·) corresponding to the Poisson distribution with
the parameter a,

gP (x) =1−

e−aax+1

(x+ 1)!

e−aax

x!

= 1− a

x+ 1
.
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These functions g(·) differ only by the multiplication constant S
S−a

. When the Poisson
partial summation is applied to the parent with finite support, we have theoretically
the infinite number of values of function g(·) available, however, not needed. The
resulting descendant then must be normalized in order to obtain a proper probability
distribution. When the normalization constant is included in the function g(·), we
obtain g(·) corresponding to the binomial distribution in this case.

3.6 Miscellanea

The power method solves problems related to iterated partial summations for a wide
spectrum of the partial summation types and of the original parent distributions. How-
ever, the power method has its conditions under which it can be applied. They are

1. the dominant eigenvalue must be unique,

2. the original parent must differ from all the non-dominant eigenvectors and

3. the original parent is such a linear combination of the eigenvectors of the matrix
A that the coefficient corresponding to the dominant eigenvector is non-zero,

as was also stated in Chapter 3.2. One can notice that the condition number 2 is
redundant when the condition 3 is fulfilled. However, it is an interesting special case.
We discuss all three conditions in the following subsections, together with some exam-
ples. Even though the power method cannot be applied when these conditions are not
satisfied, the problem of iterated partial summation might have a solution (i.e., the
limit descendant distribution can exist and can be easily identified in some cases).

3.6.1 Non-unique dominant eigenvalue

This condition is the only one which actually causes problems if it is not satisfied.
We demonstrate two types of problems on a simple example. Consider the iterated
Poisson partial summation (see Subsection 3.1.2) with the parameter a = 4

3
applied to

the original parent with the support size S = 2. The corresponding matrix A is

A =

(
1− a 1− a

2

0 1− a
2

)
=

(
−1

3
1
3

0 1
3

)
with eigenvalues 1/3 and -1/3. Its eigenvectors are

V =

(
1

0

)
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and

W =

(
1
3
2
3

)
,

as was shown in Chapter 3.3. Let the original parent be the alternative distribution
with the parameter 1

2
,

P∗ =

(
1
2
1
2

)
.

The first descendant P (1) is then

P(1) = c1AP∗ = c1

(
−1

3
1
3

0 1
3

)(
1
2
1
2

)
= c1

(
0
1
6

)
=

(
0

1

)
and the second descendant yields

P(2) = c2AP(1) = c2

(
−1

3
1
3

0 1
3

)(
0

1

)
= c2

(
1
3
1
3

)
=

(
1
2
1
2

)
,

which leads to the oscillation between two distributions, P∗ and P(1). The limit distri-
bution does not exist in this case. Leššová (2019) brings an insight into the problematic
of oscillating iterated partial summations.

Another type of problematic behaviour can be seen if we choose

P∗ =

(
2
3
1
3

)
as the original parent. Trying to identify the first descendant we compute

P(1) = c1AP∗ = c1

(
−1

3
1
3

0 1
3

)(
2
3
1
3

)
= c1

(
−1

9
1
9

)
and we obtain a vector which is not even a probability distribution (and cannot become
one by means of a normalization). Not every original parent is compatible with such a
type of partial summation. In the following we consider the condition of the dominant
eigenvalue uniqueness to be satisfied.

3.6.2 Original parent identical with a non-dominant eigenvec-
tor

Let us apply the iterated Poisson partial summation (see Subsection 3.1.2) to the
original parent of the support size S = 2. The respective matrix A is then

A =

(
1− a 1− a

2

0 1− a
2

)
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with the eigenvectors

V =

(
1

0

)

and

W =

(
2−a
2
a
2

)
,

as was shown in Chapter 3.3. Let the parameter of the Poisson distribution defining the
type of partial summation be a < 4

3
, which means that W is the dominant eigenvector.

Let the original parent be

P∗ = {P ∗
0 , P

∗
1 } = {1, 0} = V.

Then

P(1) = c1AP∗ = c1

(
1− a 1− a

2

0 1− a
2

)(
1

0

)
= c1

(
1− a

0

)
=

(
1

0

)
= P∗,

P(2) = c2AP(1) = c2AP∗ = P∗,

etc., ci being the normalization constant ensuring that P(i) is a proper probability
distribution. This leads to

P(∞) = P∗ = V,

even though the dominant eigenvector of A is W .

In general, if P∗ is an eigenvector of A, the definition of the eigenvector says

AP∗ = λP∗,

where λ is the eigenvalue corresponding to eigenvector P∗. The first descendant is then

P(1) = c1AP∗ = c1λP∗ = P∗,

assuming c1λ = 1, as P∗ is already a proper distribution. All successive descendants
are obviously identical with the original parent too.

The power method is not able to find the dominant eigenvector of A if the starting
point is equal to some non-dominant eigenvector because in such a case the iterated
multiplication by A is not able to move from the given eigenvector. Applying this to
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iterated partial summations, one cannot automatically claim the dominant eigenvector
of A to be the limit distribution, but all eigenvectors of A must be found first. Then
it must be checked whether the original parent is among them. If yes, then the limit
distribution of iterated partial summation is identical with the original parent distribu-
tion. On the other hand, if the original parent is different from all of the eigenvectors
of A, then the limit distributions is equal to the dominant eigenvector of A.

3.6.3 Inconvenient linear combination of eigenvectors as the
original parent

The original parent P∗ is supposed to be such a linear combination of the eigenvectors
of A that the coefficient corresponding to the dominant eigenvector is non-zero. For
the purpose of this section let us denote V0, V1, . . . , VS−1 the eigenvectors of the matrix
A ordered by their dominance, V0 being the dominant eigenvector. It means that the
corresponding eigenvalues λ0, λ1, . . . , λS−1 are in the relation

|λ0| > |λ1| ≥ · · · ≥ |λS−1|.

Now consider a violation of this condition, which means that the coefficient k0, by
which the dominant eigenvector is multiplied in the linear combination, is equal to
zero, i.e.,

P∗ = 0 · V0 + k1V1 + · · ·+ kS−1VS−1.

For the sake of simplicity, suppose k1 ̸= 0 and |λ1| > |λ2|. The vector AnP∗ can be
expressed as

AnP∗ = 0 + k1A
nV1 + · · ·+ kS−1A

nVS−1 = 0 + k1λ
n
1V1 +

S−1∑
j=2

kjλ
n
j Vj.

In accordance with Kuttler (2012), for large n, the term k1λ
n
1V1 determines quite well

the direction of the vector AnP∗. This is because |λ1| > |λj| for j ≥ 2 and so for a
large n, the sum
S−1∑
j=2

kjλ
n
j Vj

is fairly insignificant. It indicates that the sequence of the descendant distributions
converges to the eigenvector V1 after the normalization. In general, the limit descendant
is

P(∞) = VL,
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for

L = arg max
i∈{0,1,...,S−1};ki ̸=0

|λi|,

but only if L is unique. Otherwise we might encounter the same problems as demon-
strated in the Chapter 3.6.1.

The situation when

P∗ = VL = 0 · V0 + · · ·+ 0 · VL−1 + 1 · VL + 0 · VL+1 + · · ·+ 0 · VS−1.

is exactly the same as the one analysed in the previous section. The limit descendant
here is obviously

P(∞) = VL = P∗.
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Conclusion

The field of partial summations within the theory of discrete probability distributions
offers a wide spectrum of unsolved problems. Our research managed to solve some of
them.

First, we bring an answer to the problem of invariance when the partial summation
is parametrized. The parametrization of partial summations defines the family of
resistant discrete distributions and the family of sensitive discrete distributions. We
formulate the sufficient and necessary condition for a distribution to belong to the
family of resistant distributions. So far only the geometric and the Salvia-Bolinger
distributions are known to belong to this family. We also provide a useful necessary
condition for a distribution to belong to the resistant family. It is easy to evaluate it
and therefore to identify or to reject other candidates. We attempted to find other
resistant distributions from the rich Kemp-Dacey-hypergeometric family. However, all
distributions from that family turned out to be sensitive. Finding more distributions
from the resistant family, or proving that the resistant family consists of the two above
mentioned distributions only, is one of the possible directions of future research in this
field.

Second, we suggest an approach to solve the problem of the existence of the limit
for iterated partial summation if the original parent has a finite support. Results of
our computational study revealed that the iterated application of the Poisson partial
summation to a parent with a finite support yields a limit distribution which is not
deterministic. This fact encouraged a deeper research on the existence of the limit de-
scendant distribution for finite-supported parent distributions. The idea to reformulate
the whole partial summation process as a matrix multiplication allowed us to use the
power method. It proves the existence of the limit descendant distribution for a very
wide class of parent distributions only with minor exceptions, which we also define. A
detailed analysis of the iterated Katz partial summation is provided. The Katz par-
tial summation includes e.g. geometric partial summation, Poisson partial summation,
binomial partial summation or negative binomial partial summation, all of which we
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address. We also identify some specific cases, when the power method cannot be ap-
plied. The existence of the limit in these cases remains questionable. In future, these
results will be generalized to parent distributions with the infinite support.
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Appendix A - Computational study
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Figure 12: Descendants of the binomial dis-
tribution (n = 6, p = 0.5) under the iterated
Salvia-Bolinger partial summation (a = 0.1)
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Figure 13: Descendants of the binomial dis-
tribution (n = 15, p = 0.2) under the iterated
Salvia-Bolinger partial summation (a = 0.1)
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Figure 14: Descendants of the binomial dis-
tribution (n = 6, p = 0.2) under the iterated
Salvia-Bolinger partial summation (a = 0.8)
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Figure 15: Descendants of the binomial dis-
tribution (n = 15, p = 0.5) under the iterated
Salvia-Bolinger partial summation (a = 0.8)
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Figure 16: Descendants of the binomial dis-
tribution (n = 15, p = 0.2) under the iterated
Salvia-Bolinger partial summation (a = 0.9)
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Figure 17: Descendants of the binomial dis-
tribution (n = 6, p = 0.5) under the iterated
Salvia-Bolinger partial summation (a = 0.9)
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Figure 18: Descendants of the binomial dis-
tribution (n = 15, p = 0.2) under the iterated
Poisson partial summation (a = 0.1)
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Figure 19: Descendants of the binomial dis-
tribution (n = 6, p = 0.2) under the iterated
Poisson partial summation (a = 0.8)
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Figure 20: Descendants of the binomial dis-
tribution (n = 15, p = 0.5) under the iterated
Poisson partial summation (a = 0.8)
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Figure 21: Descendants of the binomial dis-
tribution (n = 6, p = 0.5) under the iterated
Poisson partial summation (a = 0.9)
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